Person:
ŞAHİNGÖZ, ÖZGÜR KORAY

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ŞAHİNGÖZ

First Name

ÖZGÜR KORAY

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Derin Öğrenme Yöntemleri ile Borsada Fiyat Tahmini
    (Bitlis Eren Üniversitesi Rektörlüğü, 2020) Şişmanoğlu, Gözde; Koçer, Furkan; Önde, Mehmet ali; ŞAHİNGÖZ, ÖZGÜR KORAY
    Son yıllarda, bilgisayarların donanımındaki teknolojik gelişmeler ve makine öğrenme tekniklerindeki gelişmeler nedeniyle, "Büyük Veri" ve "Paralel İşleme" kullanımı olmak üzere problem çözmek için iki artan yaklaşım vardır. Özellikle GPU'lar gibi çok çekirdekli bilgi işlem aygıtlarında paralel olarak gerçekleştirilebilen Derin Öğrenme algoritmalarının ortaya çıkmasıyla, bu yaklaşımlarla birçok gerçek dünya problemleri çözülebilmektedir. Derin öğrenme modelleri eğitildikleri veri ile sınıflandırma, regresyon analizi ve zaman serilerinde tahmin gibi uygulamalarda büyük başarılar göstermektedir. Bu modellerin finansal piyasadaki en aktif uygulama alanlarından biri özellikle borsada işlem gören hisse senetlerinin tahmini işlemleridir. Bu alanda amaç, pazardaki değişim süreci hakkındaki hisse senedinin önceki günlük verilerine bakarak kısa veya uzun vadeli gelecekteki değerini tahmin etmeye çalışmaktır. Bu çalışmada, LSTM, GRU ve BLSTM isimli 3 farklı derin öğrenme modeli kullanılarak bir hisse senedi tahmin sistemi geliştirilip, kullanılan modeller arasında karşılaştırmalı bir analiz yapıldı. Spekülatif hareketlerden uzak olması için veri seti olarak 1968'den 2018'e kadar olan New York Borsası'ndan hisse senedinin zaman serisi değerlerini kullanıldı. Spesifik olarakta IBM hisse senedi ile test çalışmaları yapıldı. Deneysel sonuçlar BLSTM modelinin 5 günlük girdi verileriyle eğitilmesi ile %63,54 lük bir yönsel doğruluk değerine ulaşıldığını göstermektedir.
  • Publication
    Deep learning based classification of malaria from slide images
    (2019) Kalkan, Soner Can; ŞAHİNGÖZ, ÖZGÜR KORAY
    As one of the most life-threatening disease in the tropical and warmer-climate countries, Malaria affects not only animals but also humans who can be infected by only a single bite from a mosquito. Although this disease is wiped out in high-income countries, as a result of traveling people, it can even emerge in all part of the world. World Health Organization announced that more than 400,000 people are expected to die due to this illness. However, it is a curable and preventable disease, if early detection is possible. Traditionally, Pathologists diagnosed this disease manually by using microscope which is a time-consuming process in our computerized world, and this model depends on the experience of the Pathologists, which is a critical problem in rural areas. Therefore, in recent years detection of Malaria using computerized image analysis which is trained using some dynamic learning mechanism has gained increasing importance. In this paper, we proposed an image processing-based Malaria detection system which is trained by deep learning. We used relatively big data for increasing the accuracy of the system, and the reached accuracy showed that the proposed system has an outstanding classification rate that can be used in real-world detection.
  • Publication
    Deep learning based security management of information systems: A comparative study
    (2020-01) Çebi, Cem Berke; Bulut, Fatma Sena; Fırat, Hazal; ŞAHİNGÖZ, ÖZGÜR KORAY; BAYDOĞMUŞ, GÖZDE KARATAŞ; 214903
    In recent years, there is a growing trend of internetization which is a relatively new word for our global economy that aims to connect each market sectors (or even devices) by using the global network architecture as the Internet. Although this connectivity enables great opportunities in the marketplace, it results in many security vulnerabilities for admins of the computer networks. Firewalls and Antivirus systems are preferred as the first line of a defense mechanism; they are not sufficient to protect the systems from all type of attacks. Intrusion Detection Systems (IDSs), which can train themselves and improve their knowledge base, can be used as an extra line of the defense mechanism of the network. Due to its dynamic structure, IDSs are one of the most preferred solution models to protect the networks against attacks. Traditionally, standard machine learning methods are preferred for training the system. However, in recent years, there is a growing trend to transfer these standard machine learning-based systems to the deep learning models. Therefore, in this paper, IDSs with four different deep learning models are proposed, and their performance is compared. The experimental results showed that proposed models result in very high and acceptable accuracy rates with KDD Cup 99 Dataset.
  • Publication
    Deep learning based forecasting in stock market with big data analytics
    (2019) Şişmanoğlu, Gözde; Önde, Mehmet Ali; Koçer, Furkan; ŞAHİNGÖZ, ÖZGÜR KORAY
    In recent years, due to the technological improvements in computers' hardware and enhancements in the machine learning techniques, there are two increasing approaches for problem-solving as the use of "Big Data" and "Parallel Processing". Especially with the emergence of Deep Learning algorithms which can be executed parallelly on multi-core computing devices such as GPUs and CPUs, lots of real-world problems are resolved with these approaches. One of the most critical application areas in the Financial Market especially sits on Stock Markets. In this area, the aim is trying to predict the future value of a specific stock by looking at its previous financial data on the exchange process in the market. In this paper, we proposed a system that uses a Deep Learning based approach for training and constructing a knowledge base on a specific stock such as "IBM". We get time series values of the stock from the New York Stock Exchange which starts from 1968 up to 2018. Experimental results showed that this approach produces very good forecasting for specific stocks.