Person:
ÜLKÜ, İLAYDA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Dr. Öğr. Üyesi

Last Name

ÜLKÜ

First Name

İLAYDA

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Optimization of cable layout designs for large offshore wind farms
    (John Wiley and Sons Ltd Wiley, 2020) Alabaş Uslu, Çiğdem; ÜLKÜ, İLAYDA
    Installation of a wind farm exposes several problems such as site selection, placement of wind turbines in the site, and designing of cable infrastructure within the farm. The latter problem, called cable layout design, is the determination of cable connections among turbines and one or more transmitters such that energies generated by turbines will be sent through the cable routes, and eventually gathered at the transmitter(s). This problem is especially important for offshore wind farms where the featured and expensive cables are used. The main objective of the present study is to address the cable layout design problem of offshore wind farms to reduce cable costs in the design using optimization-based approaches. The problem, firstly, is modelled as a mixed integer linear program (MIP) under a set of real-life constraints such as different cable and transmitter types and non-crossing connections between the turbines. Then, a novel mathematical model, which is a modification of the MIP model by imposing several heuristic rules, is proposed to solve the layout problem of large offshore wind farms. Experiments on a set of small- and moderate-sized test instances reveal that the heuristic model, MIP_H, reduces the computer time nearly 55% compared to that of MIP model while the average cable costs generated by the models are close to each other. MIP_H, besides its efficiency, provides more cost-effective layouts compared to MIP model for large-sized real-life examples. Additionally, a comparative study on MIP_H and existing methods in the literature shows that MIP_H is able to solve all instances of the real-life examples providing less cable costs in average.
  • Publication
    Optimization of Offshore Windfarm Cable Layouts
    (2018-06) Alabaş Uslu, Çiğdem; ÜLKÜ, İLAYDA; 51700; 126061
    As renewable energy arises to be an alternative energy source around the world, installation of the wind farms increases in the areas where the wind potential is efficient. One of the design problems in the installation of wind farms is determination of cable connections between turbines and transmitter(s) to provide the flow of generated energy from each turbine to the transmitter(s) through one or more routes. While layout of turbines should minimize wake losses to provide maximum of energy production, layout of cables should provide gathering of total energy at one or more transmitters minimizing total cost of cables. The present study takes layout of a set of turbines and a single transmitter as input data and addresses the optimization of cable layout problem to minimize of total cost of cables which can be different in types and capacities. The problem is modeled as a mixed integer linear program and optimal solutions or feasible solutions are obtained to a set of test instances using the proposed model. Experiments show that the instances can be optimized up to 20 turbines and feasible solutions are available for the larger problems.