Publication: Invariant Subspaces of Collectively Compact Sets of Linear Operators
dc.contributor | Fen Edebiyat Fakültesi / Faculty of Letters and Sciences Matematik - Bilgisayar / Mathematics and Computer Science | tr_TR |
dc.contributor.author | Mısırlıoğlu, Remzi Tunç | |
dc.contributor.author | Şafak, Alpay | |
dc.contributor.authorID | 108824 | tr_TR |
dc.date.accessioned | 2018-09-06T14:29:34Z | |
dc.date.available | 2018-09-06T14:29:34Z | |
dc.date.issued | 2008-05 | |
dc.description.abstract | In this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in algΓ satisfies Berger-Wang formula, where Γ is a complete chain of subspaces of X. | tr_TR |
dc.identifier.issn | 1385-1292 | |
dc.identifier.other | 1572-9281 | |
dc.identifier.uri | https://doi.org/10.1007/s11117-007-2089-3 | |
dc.identifier.uri | https://hdl.handle.net/11413/2698 | |
dc.language.iso | en_US | tr_TR |
dc.publisher | SP Birkhäuser Verlag Basel | tr_TR |
dc.relation | Positivity | tr_TR |
dc.subject | Invariant subspace | tr_TR |
dc.subject | collectively compact set | tr_TR |
dc.subject | joint spectral radius | tr_TR |
dc.title | Invariant Subspaces of Collectively Compact Sets of Linear Operators | tr_TR |
dc.type | Article | tr_TR |
dspace.entity.type | Publication |