Publication:
Invariant Subspaces of Collectively Compact Sets of Linear Operators

dc.contributorFen Edebiyat Fakültesi / Faculty of Letters and Sciences Matematik - Bilgisayar / Mathematics and Computer Sciencetr_TR
dc.contributor.authorMısırlıoğlu, Remzi Tunç
dc.contributor.authorŞafak, Alpay
dc.contributor.authorID108824tr_TR
dc.date.accessioned2018-09-06T14:29:34Z
dc.date.available2018-09-06T14:29:34Z
dc.date.issued2008-05
dc.description.abstractIn this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in algΓ satisfies Berger-Wang formula, where Γ is a complete chain of subspaces of X.tr_TR
dc.identifier.issn1385-1292
dc.identifier.other1572-9281
dc.identifier.urihttps://doi.org/10.1007/s11117-007-2089-3
dc.identifier.urihttps://hdl.handle.net/11413/2698
dc.language.isoen_UStr_TR
dc.publisherSP Birkhäuser Verlag Baseltr_TR
dc.relationPositivitytr_TR
dc.subjectInvariant subspacetr_TR
dc.subjectcollectively compact settr_TR
dc.subjectjoint spectral radiustr_TR
dc.titleInvariant Subspaces of Collectively Compact Sets of Linear Operatorstr_TR
dc.typeArticletr_TR
dspace.entity.typePublication

Files