Publication: Lambda-fractional properties of generalized Janowski functions in the unit disc
dc.contributor | Fen Edebiyat Fakültesi / Faculty of Letters and Sciences Matematik - Bilgisayar / Mathematics and Computer Science Makaleler / Articles | tr_TR |
dc.contributor.author | Çağlar, Mert | |
dc.contributor.author | YAVUZ, EMEL | |
dc.contributor.author | POLATOĞLU, YAŞAR | |
dc.contributor.authorID | 108339 | tr_TR |
dc.contributor.authorID | 108339 | tr_TR |
dc.contributor.authorID | 111202 | tr_TR |
dc.date.accessioned | 2018-10-16T09:17:48Z | |
dc.date.available | 2018-10-16T09:17:48Z | |
dc.date.issued | 2008 | |
dc.description.abstract | For analytic function f(z) = z + a2z 2 + · · · in the open unit disc D, a new fractional operator Dλf(z) is defined. Applying this fractional operator Dλf(z) and the principle of subordination, we give new proofs for some classical results concerning the class S ∗ λ (A, B, α) of functions f(z). | tr_TR |
dc.identifier | 60 | tr_TR |
dc.identifier | 60 | tr_TR |
dc.identifier | 60 | tr_TR |
dc.identifier.uri | https://hdl.handle.net/11413/2806 | |
dc.language.iso | en_US | tr_TR |
dc.relation | Matematicki Vesnik | tr_TR |
dc.subject | Starlike | tr_TR |
dc.subject | fractional integral | tr_TR |
dc.subject | fractional derivative | tr_TR |
dc.subject | distortion theorem | tr_TR |
dc.title | Lambda-fractional properties of generalized Janowski functions in the unit disc | tr_TR |
dc.type | Article | tr_TR |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 81262ad8-8f70-404c-9c30-d462b476e9eb | |
relation.isAuthorOfPublication | 82125b62-3d7a-489a-8c3f-a104e98d346e | |
relation.isAuthorOfPublication.latestForDiscovery | 81262ad8-8f70-404c-9c30-d462b476e9eb |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Lambda-fractional properties of generalized Janowski functions in the unit disc.pdf
- Size:
- 175.85 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: