Publication: Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operators
dc.contributor.author | Ahuja, Om P. | |
dc.contributor.author | ÇETİNKAYA, ASENA | |
dc.date.accessioned | 2023-02-14T13:12:02Z | |
dc.date.available | 2023-02-14T13:12:02Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this paper, we use the Faber polynomial expansion techniques to get the general TaylorMaclaurin coefficient estimates for |an|, (n ≥ 4) of a generalized class of bi-univalentfunctions by means of (p,q)−calculus, which was introduced by Chakrabarti and Jagannathan. For functions in such a class, we get the initial coefficient estimates for |a2| and|a3|. In particular, the results in this paper generalize or improve (in certain cases) thecorresponding results obtained by recent researchers. | en |
dc.identifier | 4 | |
dc.identifier.citation | AHUJA O, ÇETİNKAYA A (2021). Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operators. Fundamental journal of mathematics and applications (Online), 4(1), 17 - 24. 10.33401/fujma.831447 | |
dc.identifier.eissn | 2645-8845 | |
dc.identifier.uri | https://doi.org/10.33401/fujma.831447 | |
dc.identifier.uri | https://hdl.handle.net/11413/8315 | |
dc.language.iso | en | |
dc.publisher | Fuat Usta | |
dc.relation.journal | Fundamental journal of mathematics and applications (Online) | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Bi-univalent Functions | |
dc.subject | Faber Polynomial Expansion | |
dc.subject | (p | |
dc.subject | q)−Calculus | |
dc.title | Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operators | en |
dc.type | Article | |
dspace.entity.type | Publication | |
local.indexed.at | trdizin | |
local.journal.endpage | 24 | |
local.journal.issue | 1 | |
local.journal.startpage | 17 |