Publication:
Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operators

dc.contributor.authorAhuja, Om P.
dc.contributor.authorÇETİNKAYA, ASENA
dc.date.accessioned2023-02-14T13:12:02Z
dc.date.available2023-02-14T13:12:02Z
dc.date.issued2021
dc.description.abstractIn this paper, we use the Faber polynomial expansion techniques to get the general TaylorMaclaurin coefficient estimates for |an|, (n ≥ 4) of a generalized class of bi-univalentfunctions by means of (p,q)−calculus, which was introduced by Chakrabarti and Jagannathan. For functions in such a class, we get the initial coefficient estimates for |a2| and|a3|. In particular, the results in this paper generalize or improve (in certain cases) thecorresponding results obtained by recent researchers.en
dc.identifier4
dc.identifier.citationAHUJA O, ÇETİNKAYA A (2021). Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operators. Fundamental journal of mathematics and applications (Online), 4(1), 17 - 24. 10.33401/fujma.831447
dc.identifier.eissn2645-8845
dc.identifier.urihttps://doi.org/10.33401/fujma.831447
dc.identifier.urihttps://hdl.handle.net/11413/8315
dc.language.isoen
dc.publisherFuat Usta
dc.relation.journalFundamental journal of mathematics and applications (Online)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBi-univalent Functions
dc.subjectFaber Polynomial Expansion
dc.subject(p
dc.subjectq)−Calculus
dc.titleFaber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with (p,q) Calculus Operatorsen
dc.typeArticle
dspace.entity.typePublication
local.indexed.attrdizin
local.journal.endpage24
local.journal.issue1
local.journal.startpage17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tam Metin/Full Text
Size:
234.45 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: